Abstract
We give a comprehensive characterisation of the computational power of shallow quantum circuits combined with classical computation. Specifically, for classes of search problems, we show that the following statements hold, relative to a random oracle: (a) BPPQNCBPP ≠ BQP. This refutes Jozsa’s conjecture in the random oracle model. As a result, this gives the first instantiatable separation between the classes by replacing the oracle with a cryptographic hash function, yielding a resolution to one of Aaronson’s ten semi-grand challenges in quantum computing. (b) BPPQNC ⊈ QNCBPP and QNCBPP ⊈ BPPQNC. This shows that there is a subtle interplay between classical computation and shallow quantum computation. In fact, for the second separation, we establish that, for some problems, the ability to perform adaptive measurements in a single shallow quantum circuit, is more useful than the ability to perform polynomially many shallow quantum circuits